您的位置: 首页 > 技术文章 > 工业园区综合能源数字化系统建设方案

工业园区综合能源数字化系统建设方案

更新日期:2023-10-19浏览:350次

简婷

安科瑞电气股份有限公司 上海嘉定 201801

以下内容转自微信公众号:PPP产业大讲堂,《产业园区中工业厂房的能源综合配置》。

园区工业地产中能源综合配置存在的问题

1、能源供应安全保障不足,很多园区由于供电、供气、供热等能源供应安全保障不足,影响其经济发展。

2、能源消费结构不合理,传统能源的使用比例过高,给园区节能减排带来巨大压力。

3、管理方式粗放,管理平台覆盖率低,存在管控盲点。

4、新能源应用比例不高,开发利用可再生能源的意识不足。

5、管理方式粗放,数据变量大、属性杂,对于能源的使用情况难以实时掌控和直观呈现。

在园区工业地产开展电冷热(暖)供应、多能协同供应、综合梯级利用,以及低品位余热利用等综合能源服务,可以有效解决园区工业地产的能源利用问题,越来越多的能源互联网企业为解决园区工业地产用能问题,已在这方面深耕多年。帮助园区工业地产在用能方面:运营精细化、数据可视化、管理多维化。多层次完善园区整体及各项管理流程;运用数字分析手段,整合及协调园区资源,促进园区的产业推进,创建园区科学管理体系。

园区工业地产综合能源系统架构

园区综合能源系统架构包含物理层、信息层和服务层。物理层是物质基础,实现能源生产、传输、供应等功能;信息层是数据与控制中心,利用能源数据与信息通信技术, 进行数据的交互与共享、智慧用能控制、数据价值挖掘等;服务层是管理枢纽, 基于综合能源系统物理架构及数据、信息技术的支撑, 在清洁能源消纳、能源效率提升、能源智慧管理等方面提供综合能源的整体解决方案。园区综合能源服务的商业模式是基于上述3个层次进行规划、设计与实施。

园区工业地产的能源消费情况

园区工业地产按其产业类型可分为综合类、行业类和静脉产业类园区。综合类园区工业地产产业集群程度较高, 行业类别较多,资源消耗种类也繁多复杂;行业类园区工业地产一般以某一类行业及其衍生行业为核心, 资源消耗种类相对简单,静脉产业类园区主要从事再生资源回收、加工和利用, 其用能类型也相对简单, 以电等二次能源为主。

除生产用能以外, 园区工业地产内的商业、居民建筑、园区交通等, 也是园区用能的重要组成。目前园区工业地产能源消费面临着诸多问题, 如:能源消耗总量大, 温室气体排放量大;园区内电、水、热等能源的耦合利用不足, 各类企业资源回收、余能利用不足, 能源综合利用率不高;因本地资源禀赋、能源网络调度技术等因素的限制, 导致清洁能源应用比重不高等。

园区综合能效提升分类指导亟待加强

园区地域分布广,资源禀赋差异大,个性共性兼具,园区间能耗总量和强度、碳排放总量和强度差异大。按照能源消耗总量和强度双控向碳排放总量和强度双控转变的要求,不同地域不同园区差异很大,控能控碳哪个优先、如何来控,缺乏分类指导。亟需加强园区综合能效提升的分类指导,推动绿色低碳发展。

园区能源基础设施规模效率结构性锁定

园区广泛推行基础设施共享,以热定电为特征的集中式热电联产能源基础设施普及推广,但同时又呈现出“规模—效率”结构性锁定,以及以化石能源为主的传统能源与新能源供给结构失衡,导致温室气体排放结构性锁定。目前,大部分基础设施服役未到设计寿命的一半,园区基础设施节能降碳改造需要解决好成本收益的平衡,能源加工转化效率及系统优化亟待提升。

终端电气化面临规模数量成本综合制约

终端电气化是园区深化节能降碳的关键举措。当前,园区大部分企业的装备电气化面临单体规模小、数量多的问题,节能提效技术创新及装备推广存在投入成本高等短板。课题组对某典型精细化工园区进行了专题研究,分析了其八大类5000台存量电机设备,总容量100 MW,单台设备的平均容量约10kW,其中单机容量大于15kW以上的电机设备数量仅占设备总数的35%,容量占81%,小规模电机的能效提升面临较大挑战,需要电机技术的整体提升。

能效局部有效和系统整体有效需要平衡

“十一五”以来,在节能减排约束性指标的持续推动下,用能行业节能挖潜难度日益加大,亟待平衡好局部有效和系统整体有效,并从局部过程节能向全过程、全链条、全系统优化节能转变。以炼油行业为例,全国2020年炼油企业能效水平优于水平的产能约25%,同时有20%的产能其能效低于基准水平。我国火力发电、钢铁、化工产业和垃圾焚烧热电联产自身的能效已较高,但进一步与周边城市和社区协同挖掘余热利用方面,尚有较大潜力。研究显示,中国北方地区工业余热供暖潜力约为区域热需求的1.4 倍。

园区物质流能量流精细化管理短板明显

《国务院关于印发2030年前碳达峰行动方案的通知》(国发〔2021〕23号)要求“加强园区物质流管理”,这里物质流是广义的概念,既包括生产原料也包括能源。园区物质流能量流管理是全过程节能减污*直接、*有效、*经济的措施,是推进园区综合能效提升的重要抓手。但实践中,物质流能量流管理*基础的工作——三级计量体系建设尚存在明显短板、弱项,特别是中小规模企业。

园区工业地产综合能源配置的商业模式

在国*发布的能源发展指导意见的推动下, 园区综合能源系统建设及综合能源服务业态发展得到了有力的推动,改变了传统能源系统互相独立的产供消方式,构建 “电、热、冷、气”横向多能耦合、“源-网-荷-储”纵向多能协同、以及能源生产、传输、存储、消费都灵活的综合能源系统。这也改变了传统能源系统“条块分割”的情况,有利于培育新的市场主体。 

充分了解园区产业结构、用能需求特征和综合能源服务资源禀赋,建设分布式与集中式供应相结合的综合能源系统,开展针对传统能源利用方面的项目规划建设与投资运营。通过降低能源消费成本、提升能源利用效率获得收益,同时对优化能源需求、降低终端能耗、减少气体排放有积极影响。

分布式能源具有灵活性高、排放低、就地利用等优势,是园区能源利用的主要方式。分布式能源系统建设的业务方向包括:

①基础设施服务,即能源基础设施的建设、运行和维护,微能网的规划、建设及运营,以及存量配电网向智能电网发展的改造等;

② 区域性分布式发电厂的建设运营,如:园区大规模屋顶光伏和立面光伏系统的建设;

③虚拟电厂的建设,利用通信及控制技术,整合不同类型分布式能源,结合储能侧和需求侧的可用负荷,实现对发售电侧的协调运行;

④发电与其他行业的耦合,如:参与制氢、制甲烷等能源转换过程。

实际案例

1 位于江苏无锡的红豆工业园内有纺织服装、橡胶轮胎、生物医药等多个产业,园区于2001年建设了自备热电厂,同时满足园区内客户的用电及用热需求。2012年起,利用厂房屋顶建设分布式光伏系统,并投建储能电站,缓解园区电网调节压力,平滑整体用电负荷,起到了削峰填谷,多能互补的作用。预计到2020年,园区整体清洁能源占比将提升至15%,单位产值能耗下降8%,综合用能成本降低10%。 

2 以德国能源市场为例说明。企业可根据可再生能源的资源情况调整生产计划,当可再生能源资源充足时,实时电价相对较低,在资源欠缺时则相反,企业可据此调节其生产计划,以降低用能成本,提高其生产经济效益。德国RegModHarz项目是德国“E-Energy”计划支持的项目之一,通过制定统一的数据传输标准,将风能、抽水蓄能、太阳能、生物质能等能源系统连接起来,并为用能客户安装能源管理系统,对发电端和用电端实施双向管理,基于日前和日内市场的价格调控用户的用电时间和用电量。

项目为客户提供供热、供冷项目的规划设计、建设、运营等服务,并提供专家服务以实现客户项目实施过程中的成本控制,在此过程中,客户能够专注于其专*领域内,而将能源相关的技术问题交给专*人员处理,为其实现降低用能成本、能源利用的目的。服务内容包括但不限于:

① 能源传输、基础设施分析、需求优化等方面的咨询和规划;

②供热、供冷设备设施的建设及后续运营、维护和故障处理;

③冷、热管网的建设与运维管理;

④能源审计服务等。

其主要的服务模式包括2种: 合同能源管理与集中式供能。合同能源管理是用能,承包商需利用技术为客户提供用能服务;集中式供能的则是的能源分配和利用,以*大限度地减少能源消耗、降低成本,服务对象越多则分摊成本越低,提高整体运营效率。

针对园区内高能耗、粗放型的能源消费方式, 有必要促进其能源精细管理和循环利用,提高资源配置效率,形成节约的能源消费体系。

推进园区工业地产节能降碳重*工程

从系统工程和全局视角,推进园区经济—能源—环境(“3E”)系统整体优化,实施园区节能降碳增效工程。鼓励优先利用可再生能源,实施能—水统筹,强化节约、提效、开源,产业和能源结构双优化、双清洁化,优化资源要素配置;以园区基础设施为重*,推动能源、环境基础设施系统优化和循环共生;构建智慧管理平台,推动能源管理与园区安全、环保、物流等智慧化。为此,园区节能降碳建议优先抓好以下工程。

园区节能降碳分类指导能力建设工程

“一园一策”,研究制定园区分类管理方法。从绿色发展水平、经济规模、产业特征、能源结构、能源效率、碳排放等维度,对园区分级分类;从产业结构优化、生态产业链网、能源系统优化、基础设施升级等方面,明确各类园区能效提升。

总体来看,园区作为实体经济主战场,未来随着经济持续增长能耗总量和碳排放总量仍将继续增长。针对园区能源消耗及碳排放特点,课题组提出“以地定产、以产见能(碳)、以能(碳)优产”的碳达峰方略,将园区综合能效提升作为关键,系统有序推进产业结构优化、能效提升、能源结构转型、碳捕集等四大措施,深化工业园区节能降碳。

研究显示,通过有序实施上述四类减排措施,2015-2035年和2035-2050年期间,全生命周期碳排放量可分别减排28%和51%。现阶段园区应优先实施产业结构调整与能效提升减碳工程,挖掘其*大减排潜力;其次是提高园区非化石能源占比和增加CCUS应用。从时间维度分析,2035-2050年期间通过产业结构优化、能效提升、能源结构转型的减排潜力基本释放,进一步深*减排则需要依靠工业生产的系统优化、产业空间布局优化和必要的CCUS。

推动园区能源结构优化,可着力生活垃圾、生物质和污泥能源化,并辅以工艺过程余热回收,“一园一策”发展风、光、氢能等能源。已有研究显示,2035年后预期对园区碳减排贡献较大的途径主要为氢能、风电和光伏,到2050年其潜在减排贡献率约为73%~81%,其中氢能在2015-2035年期间有望减碳36%~37%,预期2035-2050年达到46%~50%,将对园区深*减碳起到积极作用。

园区三级计量精细化物质流能量流管理提升工程

完善企业三级计量,是“加强园区物质流管理”的重要支撑。推动园区深入开展精细化数字化计量工程,配齐能、水、料三级计量监测设施,实现数据驱动管理;推行数字化智能化计量工作,建立实时数据驱动的智慧化物质流管理系统。

设立园区及企业能效专职岗位,推动用能、用水量大的企业配全三级计量设备,并适当超前配备数字化智能化仪表,逐步实现园区全覆盖,实时采集能量流、物质流信息并接入园区智慧化管理平台,建立多源时间序列数据驱动的园区智能分析和精细管理决策,做好园区能源和物质平衡管理,在此基础上建立数字化碳管理系统。

通过完善园区企业用户侧分时三级计量表计的建设改造,自下而上厘清园区多产品、多元素、多层级的物质能量代谢结构、路径、过程等特征,定量揭示全生命周期的环境影响,提出靶向减污降碳调控措施,推动企业内、企业间、产业间物料闭路循环,并持续循环迭代优化。

园区基础设施共生节能减污降碳提效工程

针对工业园区能源基础设施的三大特点,课题组建立了年份—存量减碳模型,研究了五种主要技术措施的减碳潜力及成本效益,主要包括:天然气替代燃煤热电联产、垃圾焚烧热电联产替代燃煤、抽凝/纯凝式汽轮机升级为背压式汽轮机、将小容量燃煤机组用大容量机组替代、发展天然气联合循环机组替代燃煤小机组。研究发现,通过五种措施综合应用,温室气体可减排8%~16%,同时能减排SO2 24%~31%、减排NOx 10%~14%,并有34%~39%的节水潜力。五种措施综合作用情景下,可获得519元/吨CO2当量收益(按2015年可比价)。

园区能源基础设施和环境基础设施之间建立余热利用、污水深*处理资源化、污泥能源化等为主的能—水耦合共生系统,可同时实现节能节水减污。课题组研究表明,全国80%的园区有集中式能源环境基础设施,72%的园区有集中式污水处理厂,园区水环境基础设施和能源基础设施之间建立能--水耦合的共生关系是减污降碳的重要举措。

针对级经开区的研究显示,210余家园区可建立518条共生关系,其中239条基于能源交换,279条基于水资源交换;通过共生,能源和水资源节约潜力分别为7%和73%,可获得的节水潜力、节能潜力、降碳潜力分别为12.8亿立方米/年、90.9万吨标煤/年、572万吨CO2当量/年。

园区数智强链数字化电气化工程

推动数字要素、智能制造加快向园区集聚发展,促进企业层面和园区层面数字化、智能化、绿色化融*发展,强化电力管理智能化,提升产业链、供应链、创新链协同配套能力,提高产业链韧性,增强产业链安全性,催生“产业化+数字化+智能制造”新业态;加强园区企业生产计划、工艺技术、物料配送、设备监控维护、质量管控以及能量流物质流智能化跟踪管理。

搭建数据驱动的园区节能降碳决策支撑平台,设计开发园区基础数据库,并定期动态更新,由专*机构和科研单位联合运维并开展数据挖掘研究,支撑管理决策。

加强园区电气化建设。针对园区海量中低压小容量电力用户,开发终端智控装置和资源群控平台,建立碎片资源唤醒聚合互动新模式,以“小装置”感知、柔性调节、本地控制用户多类型设备,以“大平台”聚合可调资源,智能辅助决策,开展分层分级响应;以“强服务”注重用户无感体验,拓展节能降费增值服务,实现政*、用户、电网多方共赢。

加强园区电力资源配置优化。通过能源系统综合规划、多用户互动、电网协调控制及智能化改造,实现冷热电气协同、源网荷储集群联控;通过优化负荷和储能有功控制及电力电子设备无功调控对冲有功和无功冲击,提升园区电能质量;通过智慧电务,基于设备级用能数据,开展精细化综合能源服务。

园区综合能效提升系统工程

立足园区产业结构和用能特点,加强工业园区能源系统建设,突出系统优化和全生命周期思想,着力三个转变:一是横向多能互补,从单一能源向综合能源转变;二是纵向建立“源、网、荷、储”协调,形成多样化能源的供给、需求及储能调节的动态平衡;三是集中与分布式相协调。

以化工园区为例,首先,针对园区能源生产—能源供应—化工生产等多系统,综合运用生产工艺绿色化、电网系统优化、电机设备升级、余热回收等推进园区系统性节能和效率提升。其次,强化生产过程—产业链接—基础设施—安全环境管理协同,抓住绿色化学与绿色化工技术集成的关键,加强短流程原子经济合成技术开发,实现源头减污和源头节能,通过多产品多过程共生耦合,实现园区整体性能效提升和减污降碳。

当前,中国经济发展的仍在工业,工业发展重在以工业地产为载体的产业园区。作为工业化和城镇化快速发展的载体,工业园区和园区工业地产的绿色发展是中国经济发展和生态文明建设的重要组成。揭示工业园区人地关系的内涵,协同优化工业园区人地关系,是化解园区工业地产中园区与环境的矛盾、推进园区绿色发展的必然选择。

--以上内容转自微信公众号:PPP产业大讲堂,2023年5月23日《产业园区中工业厂房的能源综合配置》。

  1. 文章解读

文章指出当前园区工业地产能源配置存在的主要问题,包括能源供应保障不足、传统能源比例过高、能源管理方式粗放、新能源利用比例偏低、对多种能源的使用情况无法实时掌握等。通过园区综合能源架构:物理层、信息层、服务层三个层次进行园区综合能源的规划、设计与实施,推进园区工业地产节能降碳工程包括五个方面:园区节能降碳分类指导能力建设工程、园区三级计量精细化物质流能量流管理提升工程、园区基础设施共生节能减污降碳提效工程、园区数智强链数字化电气化工程和园区综合能效提升系统工程。

近三年来,多部门发文均有提及针对工业园区节能减排工作指导意见,要求提升工业园区能源利用效率,加快园区能源数字基础设施建设,利用数字技术构建智慧能源体系,打造绿色低碳型工业园区。

工业园区能源数字化系统构成

把一个工业园区的能源系统看成一个微网,这个能源微网可能由微电网、给/排水网、供冷/热管网、燃气管网等等组成。要提高园区的能源利用效率,管理者首先要实现对园区各类能源的精细化管理,实现多级能源计量和评估,这就需要建立一套园区能源的数字化系统,系统可以反馈整个园区能源的运行情况。能源数字化系统包括物理系统、感知系统和信息系统三个维度。

图1 园区微电网数字化系统的三维构成

物理系统是能源的物质基础,实现能源生产、传输、供应等功能,以微电网为例,包括市电、新能源(光伏、风力发电等)、变压器、输配电开关柜、储能系统、用电负荷(空调、照明、电机等)、V2G充电桩等等。

很多物理系统不具备数字化通讯能力,需要配置感知设备实现对物理系统的数字化展现,主要为二次设备,其中包括保护控制装置、监测和计量仪表、电量变送器、电能质量分析治理设备等,这些二次设备组成了园区能源数字化的感知系统。

*后还需要把感知系统的数据通过简单易懂的界面展示给管理人员,并提供分析建议和控制策路以达到园区能源管理和节能降耗的目的。感知系统的大量数据通过边缘计算网关采集并初步处理后传输给人机界面--信息系统,提供能源数据服务和控制、运维功能,网络架构见图2。

图2 能源数字化建设网络架构

工业园区能源数字化系统功能

AcrelEMS工业园区能源管理系统帮助搭建工业园区的能源计量体系和能源管理,结合物联网、大数据技术,可实现园区电网电力监控、能耗统计、负荷预测、照明控制、负荷监控、充电桩运营管理、分布式光伏监控、储能控制管理、用水监测、暖通管网监测、环境监测、能源计费等功能,通过一套平台实现园区能源数字化集中管理,达到可靠、安全、节约、低碳用能的目的。

图3 园区能源管理系统功能一览图

电力监控,提升园区电网运行安全

AcrelEMS对园区变电站、高低压变配电系统的变压器、断路器、直流屏、母排、无功补偿柜及电缆等配电相关设备的电气参数、运行状态、漏电电流、接点温度进行实时监测和控制,监测园区电网主要回路的电能质量并进行治理,对故障及时处理并发出告警信息,提高园区供电可靠性。

图4 电力监控和温度监测

新能源接入,提升园区能源供应安全

AcrelEMS接入园区分布式光伏电站运行数据,包括逆变器、箱变、计量仪表及电能质量监测装置,协助管理者进行光伏发电效率分析、发电量及收益统计,扩展园区供电容量,降低用电成本,减少碳排放。

图5 光伏发电曲线对照分析

储能策略控制,提升新能源消纳

AcrelEMS接入储能系统(EMS)、电池管理系统(BMS)和储能变流器(PCS)数据,为管理者提供运行模式监视和控制策略选择,系统监测电芯电流、温度、SOC、SOH,检测直流系统绝缘状况,并根据企业峰谷特点和电价波动以及上级平台指令设置储能系统的充放电策略,控制储能系统充放电,实现削峰填谷,促进新能源消纳,降低园区用电成本。

图6 储能系统PCS监测和电池监测

能耗管理,搭建计量体系

AcrelEMS采集园区电、水、热、燃气等能源消耗,搭建三级能源计量体系,进行分类分项能耗统计,计算单位面积或单位产品的能耗数据以及趋势,对标主要用能设备能效进行能效诊断,计算企业碳排放,为园区实现能源精细化管理,制定碳达峰、碳中和路线提供数据支持。

图7 能耗分析

负荷控制及计费,精细化管理降低能耗

AcrelEMS系统通过对园区建筑内部和公共照明的集中控制、感应控制、定时控制等方式节约照明能源,还可以帮助管理者更好地管理转供电的能源收费,做到欠费提前通知、欠费控制以及支付对接,通过算法消纳园区能耗公摊,避免不合理收费,保障能源收支平衡。

图8 照明智能控制和能源预付费管理

负荷预测,协调控制,保障园区供用平衡

AcrelEMS系统基于历史负荷数据,结合天气因素、园区生产计划等,预测园区功率需求、光伏发电功率、充电需求,根据变压器负载率和负荷变化,对园区可调可控设备进行统一协调控制,引导有序充电,调整储能充放电计划,为园区制定能源计划、优化用能结构提供技术支持。

图9 充电桩控制和功率预测

能源数字化系统感知设备

园区能源数字化系统除了软件外,还离不开安装于现场的各类感知设备,包括高低压配电保护控制装置、监测和计量仪表、电量变送器、电能质量分析治理设备、照明控制器、有线/无线温度传感器、水表、燃气表、能量表等各类产品,安科瑞可以为园区能源数字化系统建设提供一站式服务。

工业园区能源数字化系统的建设意义

园区作为实体经济主战场,未来随着经济持续增长能耗总量和碳排放总量仍将继续增长。要实现双碳计划,工业园区节能减排任务相当紧迫,碳排放评价试点产业园区也开始实施,如果我们还在依靠传统的手段来管理园区的能源体系显然是不可取的。主管部门陆续出台政策推动产业园区数字化转型,打造绿色低碳产业园区,因此园区的能源数字化管理系统也是势在必行。

作者介绍

简婷,安科瑞电气股份有限公司,主要研究方向为能耗监测系统。

 

 

Contact Us
  • 邮箱:2885080326@qq.com
  • 地址:上海市嘉定区育绿路253号

扫一扫  微信咨询

©2024 安科瑞电气股份有限公司 版权所有    备案号:沪ICP备05031232号-79    技术支持:智慧城市网    Sitemap.xml    总访问量:149889    管理登陆